PROBABILITY FOR THE COLLISION WITH A SOLID
SURFACE AS A DROP PASSES THROUGH A PACKED COLUMN

A, M. Landau and A. S. Zheleznyak" UDC 66.015.23

A method is proposed for determining the probability that a drop will collide with an element
of a packed column. The cases of both ordered and disordered packings are treated. Experi-
mental values of the probability are found for a packing of Raschig rings 25 X 25 mm in size.

Collisions of a drop with a column packing greatly accelerate mass transfer to the drop [1]. In order
to carry out calculations for the mass transfer in columns with an "industrial® packing* it becomes neces-
sary to determine the probability for collisions of a drop with an element of the packing as the drop passes
through a single "layer" of the packing [2, 3] (i.e., as it traverses a distance equal to the height of a single
element of the packing).

We denote by &g the probability for a collision of a drop of diameter d, and we denote by wy the
probability that the drop will traverse the layer without undergoing a collision:

gy --wg = 1. (2

If a drop is to pass through an aperture of diameter D without cqlliding with the wall, the center of
a drop (of diameter d) must lie within a circle of diameter D—d. On this basis we can determine the values
of £q and wq for a packing of Raschig rings, either. ordered or disordered.

The limiting cases of an ordered packing are the square~ and rhombic -packing versions. We distin-
guish a quadrangle with corners at the centers of four adjacent rings. In the case of square packing this
quadrangle is obviously a square, while in the case of rhombic packing it is a rhombus. If the ratio D, /dg
is large and wall effects can be neglected, the probabilities e and wq for the entire layer are equal to the
corresponding probabilities for a single element. For a single element, &4 can be calculated as the ratio
of the total area of the walls of the rings, increased by an amount d /2 in both directions, to the total area
of the element. For the case dg > d and dg > A, we have the following relations:

a(ALd)

2d, ®

=

for square packing and
f o (A d) .
= Vv gde 4

for rhombic packing.

*In packed columns for liquid —liquid systems the size of an industrial packing (15 x 15 or larger) is
generally larger than the critical dimension of the packing, i.e., the dimension determining the transition
from the regime of coalescence and redispersion of the drops in each packing layer to the regime in which
the drops float in voids in the packing, undergoing periodic collisions. Accordingto the data of [4], this
critical packing dimension is
.5
der = 2.52( ° )0 . (1)
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In the case of a disordered packing we would be dealing with a set of
"openings," the projections of the channels onto the base of the layer,
instead of channels of regular shape. These openings are characterized
by some distribution with respect to size 6, i.e., f(0); here

Si@as=1 or [F@yds =1, (5)
0

This distribution of openings, f(6), was determined experimentally.

For this purpose a glass vessel is filled with a packing of the neces-
Fig. 1. Photograph of a sary size. If wall effects are to be negligible, the ratio of the vessel
packing layer. diameter to the packing size must be at least 12 [5]. Then a dark-colored

liquid is poured into the vessel, to a level reaching the middle of the upper
layer of the packing. The packing layer is photographed from above. Then the rings of the upper layer
are removed, and an amount of the liquid corresponding to the height of one layer is drained off, so that
the level of the liquid is now at the middle of the second packing layer. As a control, the volume of the
liquid which is drained off is measured and compared with the quantity Sdgp. Then the second layer is
photographed, etc. Figure 1 shows an illustrative photograph.

In this procedure the photographs reveal the projections of the channels onto the middle of the layer,
while the "openings" are the projections of the channels onto the base of the layer. Let us evaluate the
error involved in determining £(§) from the projections of the channels onto the middle of the layer instead
of from the projections of the channels onto the base of the layer. We consider a single packing element
{(a Raschig ring). We assume that the angle between the axis of the ring and the base plane is @. The error
AF is equal to the difference between the areas of the projections of the ring onto the plane passing through
the middle of the layer and onto its base. Obviously, fora =0, 7/6 < @ < 7/3, and o = 7/2 these pro-
jections are equal, and we have AF = 0 (Fig.2,a~-c). An error appears only in the intervals 0 < o < 7/6
and 7/3 < o« < /2 (Fig. 2d). For a numerical evaluation we consider the difference between the areas
of two ellipses with minor semiaxes de /2 and major semiaxes

,__ Oe

a = 3 (cosa +-sina)

for the large ellipse and

a= —g—e [cosa - sina — (0,5 — sina) tg o]

for the small ellipse. Then we have

2
wd},

AF = (0,5 —sinajtge,

and the relative error is

AF :(O,S—Sma)tga ‘ ©

F’ sino - cosa

The maximum relative error according to Eq. (6) is (AF / F'Vymax = 5.3%.

The values of p and £(5) are determined from photographs of the layers in the following manner: the
photographs are covered with a grid of intersecting parallel lines 73, 5, ... ,!j, . .., lc running in an
arbitrary direction. We find the distribution of line segments lying between packing elements, 0ji> which
turns out to be approximately a logarithmically normal distribution. Evgrafov [6] has offered a theoretical
justification for using the distribution of line segments with respect to length as a characteristic of the
size distribution of voids. Bogomolova and Orlova [7] used this method to determine the size distribution -
of the voids in porous materials.

The fraction of free cross section of a layer is determined from

i

> 3o

p=i2 = (0

j==1
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Fig. 2. Difference between the areas of the projections
AF of a packing element onto the plane passing through
the base of the layer and onto a plane passing through the
_middle of the layer as a function of the inclination angle

a;a)a=1/2;b)a=0¢)r/3<a< /2, 0<qac<
/8y n/6< o< n/8.

m

&4

/]

Fa) [\ 085
o / /

S\ /
a05 N ” I

AN -

7

0 25 2 4%,

’

Fig. 3 Fig. 4

Fig. 3. Size distribution f(5) of the projections of the
channels onto a plane. Here dji is given in cm.

Fig. 4. Probability ¢4 for the collision of a drop with a
packing element as the drop traverses a layer of Raschig

15 925 935 dy

rings 25 X 25 X 3 mm in size as a function of the drop

diameter, d ({in cm).

If the drop size is negligible, the probability for the passage of a drop through the packing layer

without undergoing a collision is equal to this fraction:

©=p.

If the drop size must be taken into account, we would have

o, =03 )46,

&=d

In the present experiments we used a packing of Raschig rings 25 X 25 mm in size.

When the distribution curve became reproducible, we conclude that we had carried out a sufficient

(3

(9

number of measurements, We found that on the order of 1400 measurements for a single layer were suffi-

cient to obtain reproducible results. The distribution () is shown in Fig. 3.

The fraction of free cross section, determined from Eqg. (7) and the results of measurement of 28

layers, is 0.27 + 0.014, Figure 4 shows the collision probability for this particular packing as a function

of the drop diameter, determined from Eqgs. (7) and (9).

NOTATION

g4 is the probability for a collision as a drop traverses a single packing layer;
wg is the probability for the traversal of a single packing layer by a drop without a collision;

é is the size of the projection of the channel onto the base of the layer;
f(6) is the size distribution of the projections of the channels;
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is the cross-sectional area of the column;

is the fraction of free cross section of the packing layer;

is the drop diameter;

is the size of the packing element;

are the major axes of the ellipse;

is the area of an ellipse with a major axis a';

is the difference between the areas of the projections of the ring onto the base of the layer and
onto the center of the layer;

is the column diameters;

is the wall thickness of the Raschig rings;

is the surface tension;

is the difference between the densities of the solid and disperse phases;
is the index of the intersecting lines;

is the index of the interval 6 on an intersecting line.
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